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To weight or not to weight

We recently showed that information theory (IT)-based weighted methods for transcription factor-

binding site search generally perform worse than non-weighted ones (Erill and O'Neill 2009). Therefore,

the question is: should we use weighted methods or not. And why?

Weighted and non-weighted methods

IT-based methods are derived from an information theory-based analysis of transcription factor binding
sites. Given a collection of known binding sites for a transcription factor, these methods are used to
score a target sequence positions using a predetermined window size. By applying a threshold, these
methods can act as classifiers for putative binding sites in the sequence of interest. Weighted methods
are those that weight up/down position scores depending on the “importance” of each position (as

derived from the mutual information profile; see this for an introduction to the field), while non-

weighted methods simply assume a uniform scoring.

Although there are several variants (Erill and O'Neill 2009), the most widespread IT-based methods are
the R; index (Schneider 1997) and its weighted counterpart, Rsequence'Ri (O'Neill 1989; Erill and O'Neill
2009).
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As it can be seen, the non-weighted method R; assigns a value that is proportional to the logarithm of

the frequency of the observed base in the position frequency matrix (PFM) generated by the collection.

The weighted method does exactly the same, but now using the Rseguence Value at each position to

weight the score assigned by R..
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The case for weighted methods
Intuitively, weighted methods make a lot of sense. The classical argument in favor of weighted methods
was clearly stated in (O'Neill 1998). The argument relies on the fact that R; discards information on the

relative importance of each position within the motif. Let’s see how it works.

Suppose that for a given motif position a we have motif frequencies p,(A)=0.6, p,(C)=0.4, p,(T)=0.0 and
p.(G)=0.0. This is a good position, in the sense that it is quite decently conserved in the motif. If we
observe a Cin our query sequence, then Ri(a)=Hpesore-1082(0.4). Now, suppose position b of the motif has
motif frequencies py(B)=0.2, pp(C)=0.4, p,(T)=0.2 and py(G)=0.2. This a bad position, not very well
conserved. However, if we again observe a C in position b of the query sequence, Ri(b)=Hpefore-1082(0.4).
So R; assigns the same score to a C observed in a relatively well conserved position (a) and to a C
observed in a nearly random one (b). This is counterintuitive in the sense that we would expect that a

match in a conserved position be more significant than a match in a poorly conserved one.
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Table 1 - Position Specific Frequency Matrix for transcription factor CRP.
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Figure 1 — Sequence logo for the binding motif CRP. The Rsequence function is superimposed on the logo.

But is this true beyond the pathological case described above? Should we force a match to be more
significant in a conserved position? There is a catch on words here, depending on how we define a
match. The argument above exposes that a particular match in a conserved position (i.e. observing C)
should weight more than the same match (i.e. observing C) on a less conserved position, even though

the frequency of C is the same in both positions. On the other hand, if we define a match as observing



the consensus base, and consider anything else a mismatch, one can argue that a match in a conserved
position will tend to be more significant than a match in a non-conserved position when using a non-
weighted method. This is easy to see with a real-world example. Take the CRP binding site in Figure1. AT
in position 15 will get a high R; score (1.596) just because the T frequency (consensus) is high at that
position (77%), whereas an A in position 19 (consensus) will get a lower score (1.184) due to a lower
frequency of the consensus A there (57%). What the weighting procedure does is to reinforce this trend
by multiplying the R; score times Rseguence. The argument is that conserved positions should be more
important to define a motif. Thus, they should contribute more to the score of a potential site. But is

this logic correct?

It seems to be. And it seems to make even more sense when considering mismatches. For CRP, a C in
position 15 will receive a R; score of -1.150. The same happens to a C in position 19, since both have
the same C frequency (11%). If we apply the Rsequence Weighting, though, position 15 will now contribute
-0.987 and position 19 will generate -0.401. What this is saying is that having a C in position 15 is
much worse (in fact twice as much) than having a C in position 19, on the grounds that position 15 is
considerably more conserved (0.85 bits) than position 19 (0.35 bits). We assume it is thus more
important for the protein to bind, and thereby more susceptible to mismatches. So, yes, the whole

thing does seem to make sense. Or does it?

Consensus C15 (DIFF) % Cc19 (DIFF) %
R; 23.02 20.28 -2.75 11.926 20.69 -2.33 10.137
Rsequence'Ri 13.78 11.43 -2.36 17.099 12.97 -0.81 5.912

Table 2 — Different scores (using weighted and non-weighted methods) for putative BUH sites: consensus, consensus with an A in position 2
and consensus with an A in position 10. The difference between consensus and mutated scores is shown between brackets.

The previous argument makes a subtle omission. Even though a Cin both positions leads to a positional
R; score of -1.150, this does not mean that a C in both positions has the same effect. When we
compare against the best possible score for each position (+1.596 for a T in position 15 and +1.184
for an A in position 19) we can easily see that the C score of -1.150 is going to become more
important in position 15 than in position 19, because a C in position 15 will not only mean having a
negative -1.150 score, but also loosing a larger positive putative score. Hence, using R; C15 looses

2 .75 with respect to consensus, but C19 looses only 2.33. On the other hand, if we take into account



the full range of scores for both positions, C15 represents a decrease of 73% from the maximum score,
while C19 is 100% (the worst case) decrease from the maximum score. Thus, even though a C15 has a

larger net effect on the score, its effect is weaker than that of C19 in the relative terms of each position.

So, what is going on here? On the one hand, we can conclude that it is not absolutely true that non-
weighted methods do not take into account the importance of each position, as they do so implicitly by
using the position frequency matrix: @ mismatch in a highly conserved position represents a larger net
loss in score than the same mismatch (same frequency) in a less conserved position. The question thus
becomes: should we reinforce this effect by weighting with the Rsequence value? Again, we can turn to the
numbers to try to get an answer. Using the weighted Rsequence’Ri method, the C15 score decreases 17%
from consensus, whereas C19 decreases only 6% (the figures are 12% and 10% for the R; method). Even
though the numbers may look a bit disproportionate, the 17% score reduction does still appeal to our
intuition when we look at the CRP logo in Figure 1. Not having a T in the 15 position is relatively rare
(23% of sites) and therefore missing it should be penalized quite strongly (barring unanticipated
interposition dependencies that compensate for the loss), whereas the A at position 19" is missing in
43% of cases and thus should be expected to be missing relatively often. In this sense, the difference in
scores for the R; method (even though significant, 2%) seems too small to reflect the importance of the
error incurred in by missing the correct base. (This argument is more obvious with artificial motifs; see

Appendix).

To conclude, weighting seems to make sense for relatively large motifs, in which the individual
contributions of positional R; values become diluted. Going back to our example, the difference
between C15 and C19 in R; absolute score loss may be quite significant if taken alone (2.75 vs. 2.33;
15% difference), but becomes relatively meaningless when added to the other 21 positional scores
(2%). Weighting with Rsequence €Xacerbates the positional score loss (-2.36 vs. -0.81; 65% difference)
leading to a difference in total score that still reflects the difference in importance between the

positions (13%).

So? So, yes, apparently, weighting makes intuitive sense, emphasizing the importance of conserved

positions when scoring sites. Why, then, did we initiate this whole discussion?



The case against weighted methods
As stated at the beginning, we recently showed that weighted methods perform worse than non-
weighted ones when conducting genomic searches for TF-binding sites. This is clear-cut when looking at

results for CRP:
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Figure 2 — ROC curve of search for CRP sites on the E. coli genome.

The plot above is a ROC curve, showing the decrease in specificity (x-axis) as one tries to increase the
sensitivity (y-axis) by raising the method’s threshold. On average, the weighted method does 16%
worse (more false positives for the same sensitivity) than the non-weighted one, which is clearly not
what we were expecting from the previous argument. So, why does this happen? The answer is
tantalizingly simple, yet very informative. By concentrating on a number of key conserved positions
(and thus downplaying non-conserved ones), weighted methods are more prone to report false
positives, simply because the chances that 8 random sequence positions match a profile are far greater
than the chances that any 22 random sequence positions match a profile. We can see this clearly with
an example. The site GGGGGTGAGGGGGGTCACGGGG is clearly not a CRP site. Even though it retains
the main motif NA-GTGA-N6-TCAC-N4, any experienced researcher working with CRP will quickly


http://en.wikipedia.org/wiki/Receiver_operating_characteristic

tell you that the heavy presence of G’s in non-conserved positions makes it an unlikely candidate for a

CRP site.
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Figure 3 — Scoring profile for sequence GGGGGTGAGGGGGGTCACGGGG using the Rsequence’Ri and the R; methods.

However, by concentrating only on conserved positions, Rsequence'Ri gives this sequence a score of
6.005, while R; scores it as -0.535. The global range (best to worst possible scores) for RseguenceRi is
+13.78 to -27.78 (41.56). The range for R; is 23.32 to -45.98 (69.3). Seen in this light, Rsequence'Ri
drops 18.71% with respect to consensus for the query sequence, while R; drops much more (34.42%).
So, basically, R; is paying more attention to the G’s in non-conserved positions than Rseguence-R; is. This is
obvious in the middle positions, where the Rsequence’Ri SCOre is negative but almost zero, while R; scores
mainly negative values on the 0.4-0.7 range. It is still more obvious at position 21, which is not very
strongly conserved (0.51 bits) but has an extremely low frequency of G’s (2%). Rsequence'Ri @ssigns a
negative score (-1.78) based on the low G frequency, but markedly attenuated by the low information

content, whereas R; strongly punishes the presence of G21 (-3.41).

This may sound all like numerology, but it has important effects for the efficiency of both methods. This
becomes clearer when we examine the scores for the 210 known CRP sites used to derive the CRP
motif. As it can be seen in Table 3, the average score for a CRP site is 7.15 using the weighted method,
and the standard deviation is 3.32. Therefore, the 6.005 score obtained by the
GGGGGTGAGGGGGGTCACGGGE sequence lies well within what is considered a “normal” CRP site under
the scope of the Rsequence’Ri method when it is obviously not a site. The same does not hold true for the
R; method. Here, the query sequence gets -0.535, while the mean and standard deviation are 10.08
and 4 .6. Therefore, the query sequence falls way below the radar for the R; method. In fact, applying a

95% cutoff under the assumption of a normal distribution, the query would be accepted by R.equence’Ri



and rejected by R;, which is precisely the reason why weighted methods fare worse than non-weighted

ones in genomic searches.

Mean Std dev Min Max 95% cutoff Worst Best
R; 10.08 4.6 -19.27 19.02 4.18 -45.99 23.32
Rsequence'Ri 7.15 3.32 -12.99 13.17 2.89 -27.79 13.78

Table 3 — Mean, standard deviation, maximum and minimum scores (using weighted and non-weighted methods) for CRP sites, as well as the
logical cut-off to retain 95% of the 210 sites if assuming a normal distribution. Worst and best possible scores for “ideal” CRP sites are also
shown.

Information invisible

So, much to our intuition’s chagrin, non-weighted methods perform better in site search because they
score fairly non-conserved positions. By definition, however, non-conserved positions are positions
with very little positional information content. This means that, apparently, the protein does not care
much what base occupies those particular positions. Yet the R; method is performing a very simple
calculation and performing much better than the weighted methods that discard these positions. How

is it doing so? What information is it relying on?

R; itself should be able to provide us with the answer. The method is doing a linear sum of log
frequencies. It follows, therefore, that the sum of these log frequencies contains information that is
useful to discriminate CRP sites. That is, there is no positional information per se in the non-conserved
regions, but there is nonetheless global frequency information in these stretches. This means, namely,
that R; is using multi-position information on base frequencies to help it discriminate CRP sites. A well
known instance of multi-position frequency information is the GC-content of a sequence segment.
Indeed, if one uses the GC-content of the non-conserved stretches (weighted by positional information
content, so that log frequency information is provided) to re-sort the predictions of the weighted index,

the results improve considerably, but are still not as good as those of R,.
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Figure 4 — ROC curve of search for CRP sites on the E. coli genome.

Invisible information and protein function

It seems clear thus that the exact scoring of R; is not simply accounting for %GC, but it must amount to
a slightly more complex approximation of it. This explains how a method based on positional
information content can extract information from positions with very low information content. But how
does this translate into a protein locating its binding sites? We know that proteins bind mostly their
targets using specific contacts between particular amino acids and DNA bases (von Hippel and Berg
1989). This again suggests a weighted approach, since specific contacts are the main players. And this
seems to be the case when a protein has to differentiate among several of its binding sites, yielding
different affinities. This is known as the ranking problem and it has been assumed traditionally to be
akin to the search problem. The results above, however, suggest that this is not so. Apparently, a
protein searching for its binding sites is substantially driven by non-specific contacts, which allow it to
infer global motif or sub-motif properties, such as AT-richness or curvature, and use them to reject false

positive sites more efficiently.

The last word: weighted methods strike back
After such a lengthy treatise, one would presume that all is well and said about weighted and non-

weighted methods: weighted methods relate better to the ranking problem, non-weighted methods



relate better to the search problem. Or so it would seem. One of the questions the above discussion
raises is what to use as a binding site alignment. In particular, since weighted methods prove that non-
conserved positions can be important for search purposes, one might wonder where a binding site
starts/ends. Does it end at the last conserved position as it has been traditionally assumed? Or should
we use additional positions, as done above with the 22 bp (instead of conventional 20 bp) CRP
collection? And, if so, how many? As it turns out, the question is far from trivial and yields some

unexpected results (Bhargava and Erill 2010).
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Figure 5 — ROC curve of search for CRP sites on the E. coli genome and extended CRP profile (122 bp).

Adding 30 bp on each side to the 22 bp CRP motif dramatically reduces the efficiency of the R; method,
making it worse than the weighted Rsequence’Ri method using 22 bp. To the unwary eye this would
suggest that there is no additional non-positional information beyond the 22 bp used before for CRP
sites. However, if we repeat the experiment with the weighted Riequence'Ri method, we get completely
different results: search efficiency improves with 82 bp sites. And it continues to improve with 122 and

222 bp sites, albeit very slightly between these last two.



These results tell us that there is additional search information beyond the 22/20 bp of conventional
sites. They also tell us that the non-weighted approach has built-in limitations. The non-weighted
approach works in 22 bp sites because it does not downplay non-conserved positions, thus not allowing
conserved positions to dominate and fall prey to random false positives. By the same token, though,
the R; method performs miserably when the site is extended, as the positional information in conserved
sites (which, after all, is the main source of information for these methods) is progressively diluted by a
deluge of non-conserved positions. By weighting non-conserved positions down, weighted methods are
able to take in additional positions without much trouble, and to extract some useful information out of
them. These results thereby suggest that each set of methods is picking different subsets of non-
positional information: inner spacer information for R, extended neighborhood information for
Rsequence’Ri- It follows that by combining them we should be able to improve R; results, and this is

precisely what happens, even though mildly, when both scores are combined.
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Appendix

The pro-weighting argument using the artificial motif BUH

ATGACATCAT ATTCGCTAAT ATTGCGAGAT GTGTGATCAT ATGTTGCCAG
ATGCGACAAT GCTAGCTCAG ATGCTGATAT GTACTGACAT ATGAGATTAT
ATGCTGCCAA TAGCTAGCAT TTGTGATGAT ATGCATTCAG ATCAGACCAT
ATGCGATAGG ATCGCGCCAT TTAGCATGCC ATGAATACTT ATGACAGCAT
ATCGACGTAC ATCGCTACAT ATTGCATCAG ATGGACCCCT ATGATGACTT
Table 4 - List (or collection) of binding sites for the hypothetical protein BUH.
1 2 3 4 5 6 7 8 9 10
A | 0.76 0.04 0.08 0.28 0.12 0.44 0.24 0.12 0.80 0.04
C | 0.00 0.04 0.12 0.32 0.28 0.12 0.28 0.68 0.08 0.04
T | 0.12 0.92 0.16 0.16 0.28 0.12 0.40 0.08 0.08 0.68
G | 0.12 0.00 0.64 0.24 0.32 0.32 0.08 0.12 0.04 0.24

Table 5 — Position Specific Frequency Matrix for transcription factor BUH.
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Figure 6 — Sequence logo for the binding motif BUH. The Rsequence function is superimposed on the logo.

Here a T in position 2 will get a high R; score (1.880) because the T frequency is 92%, whereas a T in
position 10 will get a score of 1.444 due to a lower frequency (68%). Considering mismatches, an A in
position 2 will get a R; score of —-1.858. The same for an A in position 10, since both have the same A
frequency (4%). With Rsequence Weighting, position 2 will contribute -2.820 and position 10 will

contribute -1.263. Thus, having an A in position 2 is much worse than having an A in position 10.

Consensus A2 Al10
R; 10.361 6.776 (-3.585) 7.191 (-3.170)
R o'R; 7.733 2.291 (-5.441) 5.577 (-2.156)

Table 6 — Different scores (using weighted and non-weighted methods) for putative BUH sites: consensus, consensus with an A in position 2
and consensus with an A in position 10. The difference between consensus and mutated scores is shown between brackets.
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When we compare against the best possible score (a T) for each position (+1.727 and +1.312) we can
easily see that the A score -1.858 is more important in position 2 than in position 10, because an A not
only means having a negative —1.858 score, but also loosing a larger positive putative score. Hence, A2

looses -3.585 with respect to consensus, but A10 looses only -3.170.

Using the weighted Rsequence'Ri method, the A2 score decreases 70%, whereas A10 decreases only 28%
(the figures are 35% and 31% for the R; method). In this case, the 70% score reduction does indeed
appeal to our intuition. Not having a T in the 2" position is rare (in fact only one sequence
(GCTAGCTCAQG) in the collection lacks a T there, and its R; score is so low that one is tempted to think
of it as an outlier). In contrast, the T in position 10 is not that well conserved, and the penalty should

not be that severe.



